Pareto Density Estimation: Probability Density Estimation for Knowledge Discovery
نویسنده
چکیده
Pareto Density Estimation (PDE) as defined in this work is a method for the estimation of probability density functions using hyperspheres. The radius of the hyperspheres is derived from optimizing information while minimizing set size. It is shown, that PDE is a very good estimate for clusters of Gaussian structure. The robustness of the method is tested with respect to cluster overlap, number of clusters, different variances in different clusters and application to high dimensional data. For high dimensional data PDE is found to be appropriate for the purpose of cluster analysis. The method is tested successfully on a difficult high dimensional real world problem: stock picking in falling markets.
منابع مشابه
تخمین احتمال بزرگی زمینلغزشهای رخداده در حوزه آبخیز پیوهژن (استان خراسان رضوی)
Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, lands...
متن کاملPareto Density Estimation: A Density Estimation for Knowledge Discovery
Pareto Density Estimation (PDE) as defined in this work is a method for the estimation of probability density functions using hyperspheres. The radius of the hyperspheres is derived from optimizing information while minimizing set size. It is shown, that PDE is a very good estimate for data containing clusters of Gaussian structure. The behavior of the method is demonstrated with respect to clu...
متن کاملWavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کامل